Papers
Topics
Authors
Recent
2000 character limit reached

Verbally prime T-ideals and graded division algebras (1610.04425v3)

Published 14 Oct 2016 in math.RA

Abstract: Let $F$ be an algebraically closed field of characteristic zero and let $G$ be a finite group. We consider graded Verbally prime $T$-ideals in the free $G$-graded algebra. It turns out that equivalent definitions in the ordinary case (i.e. ungraded) extend to nonequivalent definitions in the graded case, namely verbally prime $G$-graded $T$-ideals and strongly verbally prime $T$-ideals. At first, following Kemer's ideas, we classify $G$-graded verbally prime $T$-ideals. The main bulk of the paper is devoted to the stronger notion. We classify $G$-graded strongly verbally prime $T$-ideals which are $T$-ideal of affine $G$-graded algebras or equivalently $G$-graded $T$-ideals that contain a Capelli polynomial. It turns out that these are precisely the $T$-ideal of $G$-graded identities of finite dimensional $G$-graded, central over $F$ (i.e. $Z(A)_{e}=F$) which admit a $G$-graded division algebra twisted form over a field $k$ which contains $F$ or equivalently over a field $k$ which contains enough roots of unity (e.g. a primitive $n$-root of unity where $n = ord(G)$).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.