Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improved Parallel Construction of Wavelet Trees and Rank/Select Structures (1610.03524v3)

Published 11 Oct 2016 in cs.DC

Abstract: Existing parallel algorithms for wavelet tree construction have a work complexity of $O(n\log\sigma)$. This paper presents parallel algorithms for the problem with improved work complexity. Our first algorithm is based on parallel integer sorting and has either $O(n\log\log n\lceil\log\sigma/\sqrt{\log n\log\log n}\rceil)$ work and polylogarithmic depth, or $O(n\lceil\log\sigma/\sqrt{\log n}\rceil)$ work and sub-linear depth. We also describe another algorithm that has $O(n\lceil\log\sigma/\sqrt{\log n} \rceil)$ work and $O(\sigma+\log n)$ depth. We then show how to use similar ideas to construct variants of wavelet trees (arbitrary-shaped binary trees and multiary trees) as well as wavelet matrices in parallel with lower work complexity than prior algorithms. Finally, we show that the rank and select structures on binary sequences and multiary sequences, which are stored on wavelet tree nodes, can be constructed in parallel with improved work bounds, matching those of the best existing sequential algorithms for constructing rank and select structures.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.