Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces (1610.03288v1)

Published 11 Oct 2016 in math.GT

Abstract: In this paper, we make use of the relations between the braid and mapping class groups of a compact, connected, non-orientable surface N without boundary and those of its orientable double covering S to study embeddings of these groups and their (virtual) cohomological dimensions. We first generalise results of Birman and Chillingworth and of Gon\c{c}alves and Guaschi to show that the mapping class group MCG(N ; k) of N relative to a k-point subset embeds in the mapping class group MCG(S; 2k) of S relative to a 2k-point subset. We then compute the cohomological dimension of the braid groups of all compact, connected aspherical surfaces without boundary. Finally, if the genus of N is greater than or equal to 2, we give upper bounds for the virtual cohomological dimension of MCG(N ; k).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.