Papers
Topics
Authors
Recent
2000 character limit reached

Model Reduction of Linear Multi-Agent Systems by Clustering and Associated $\mathcal{H}_2$- and $\mathcal{H}_\infty$-Error Bounds (1610.02432v1)

Published 7 Oct 2016 in math.OC and cs.MA

Abstract: In this paper, we study a model reduction technique for leader-follower networked multi-agent systems defined on weighted, undirected graphs with arbitrary linear multivariable agent dynamics. In the network graph of this network, nodes represent the agents and edges represent communication links between the agents. Only the leaders in the network receive an external input, the followers only exchange information with their neighbors. The reduced network is obtained by partitioning the set of nodes into disjoint sets, called clusters, and associating with each cluster a single, new, node in a reduced network graph. The resulting reduced network has a weighted, symmetric, directed network graph, and inherits some of the structure of the original network. We establish a priori upper bounds on the $\mathcal{H}2$ and $\mathcal{H}\infty$ model reduction error for the special case that the graph partition is almost equitable. These upper bounds depend on the Laplacian eigenvalues of the original and reduced network, an auxiliary system associated with the agent dynamics, and the number of nodes that belong to the same clusters as the leaders in the network. Finally, we consider the problem of obtaining a priori upper bounds if we cluster using arbitrary, possibly non almost equitable, partitions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.