Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Searching of Partial Grids (1610.01458v1)

Published 5 Oct 2016 in cs.DM, cs.DC, and math.CO

Abstract: We consider the following distributed pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown $n$-node network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few agents as possible. We restrict our attention to networks that are embedded into partial grids: nodes are placed on the plane at integer coordinates and only nodes at distance one can be adjacent. We give a distributed algorithm for the searchers that allow them to compute a connected and monotone strategy that guarantees searching any unknown partial grid with the use of $O(\sqrt{n})$ searchers. As for a lower bound, not only there exist partial grids that require $\Omega(\sqrt{n})$ searchers, but we prove that for each distributed searching algorithm there is a partial grid that forces the algorithm to use $\Omega(\sqrt{n})$ searchers but $O(\log n)$ searchers are sufficient in the offline scenario. This gives a lower bound of $\Omega(\sqrt{n}/\log n)$ in terms of achievable competitive ratio of any distributed algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.