Papers
Topics
Authors
Recent
2000 character limit reached

Inducing Multilingual Text Analysis Tools Using Bidirectional Recurrent Neural Networks

Published 29 Sep 2016 in cs.CL | (1609.09382v1)

Abstract: This work focuses on the rapid development of linguistic annotation tools for resource-poor languages. We experiment several cross-lingual annotation projection methods using Recurrent Neural Networks (RNN) models. The distinctive feature of our approach is that our multilingual word representation requires only a parallel corpus between the source and target language. More precisely, our method has the following characteristics: (a) it does not use word alignment information, (b) it does not assume any knowledge about foreign languages, which makes it applicable to a wide range of resource-poor languages, (c) it provides truly multilingual taggers. We investigate both uni- and bi-directional RNN models and propose a method to include external information (for instance low level information from POS) in the RNN to train higher level taggers (for instance, super sense taggers). We demonstrate the validity and genericity of our model by using parallel corpora (obtained by manual or automatic translation). Our experiments are conducted to induce cross-lingual POS and super sense taggers.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.