Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Two-time-scale stochastic partial differential equations driven by $α$-stable noises: Averaging principles (1609.09287v1)

Published 29 Sep 2016 in math.ST and stat.TH

Abstract: This paper focuses on stochastic partial differential equations (SPDEs) under two-time-scale formulation. Distinct from the work in the existing literature, the systems are driven by $\alpha$-stable processes with $\alpha \in(1,2)$. In addition, the SPDEs are either modulated by a continuous-time Markov chain with a finite state space or have an addition fast jump component. The inclusion of the Markov chain is for the needs of treating random environment, whereas the addition of the fast jump process enables the consideration of discontinuity in the sample paths of the fast processes. Assuming either a fast changing Markov switching or an additional fast-varying jump process, this work aims to obtain the averaging principles for such systems. There are several distinct difficulties. First, the noise is not square integrable. Second, in our setup, for the underlying SPDE, there is only a unique mild solution and as a result, there is only mild It^{o}'s formula that can be used. Moreover, another new aspect is the addition of the fast regime switching and the addition of the fast varying jump processes in the formulation, which enlarges the applicability of the underlying systems. To overcome these difficulties, a semigroup approach is taken. Under suitable conditions, it is proved that the $p$th moment convergence takes place with $p\in(1,\alpha )$, which is stronger than the usual weak convergence approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.