Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Sentence Representation with Guidance of Human Attention (1609.09189v2)

Published 29 Sep 2016 in cs.CL

Abstract: Recently, much progress has been made in learning general-purpose sentence representations that can be used across domains. However, most of the existing models typically treat each word in a sentence equally. In contrast, extensive studies have proven that human read sentences efficiently by making a sequence of fixation and saccades. This motivates us to improve sentence representations by assigning different weights to the vectors of the component words, which can be treated as an attention mechanism on single sentences. To that end, we propose two novel attention models, in which the attention weights are derived using significant predictors of human reading time, i.e., Surprisal, POS tags and CCG supertags. The extensive experiments demonstrate that the proposed methods significantly improve upon the state-of-the-art sentence representation models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shaonan Wang (19 papers)
  2. Jiajun Zhang (176 papers)
  3. Chengqing Zong (65 papers)
Citations (44)