Papers
Topics
Authors
Recent
2000 character limit reached

Analysis of Massive Heterogeneous Temporal-Spatial Data with 3D Self-Organizing Map and Time Vector

Published 27 Sep 2016 in cs.LG and cs.NE | (1609.09116v1)

Abstract: Self-organizing map(SOM) have been widely applied in clustering, this paper focused on centroids of clusters and what they reveal. When the input vectors consists of time, latitude and longitude, the map can be strongly linked to physical world, providing valuable information. Beyond basic clustering, a novel approach to address the temporal element is developed, enabling 3D SOM to track behaviors in multiple periods concurrently. Combined with adaptations targeting to process heterogeneous data relating to distribution in time and space, the paper offers a fresh scope for business and services based on temporal-spatial pattern.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.