Papers
Topics
Authors
Recent
Search
2000 character limit reached

On a multiplicative version of Bloch's conjecture

Published 28 Sep 2016 in math.AG | (1609.08798v1)

Abstract: A theorem of Esnault, Srinivas and Viehweg asserts that if the Chow group of 0-cycles of a smooth complete complex variety decomposes, then the top-degree coherent cohomology group decomposes similarly. In this note, we prove that (a weak version of) the converse holds for varieties of dimension at most 5 that have finite-dimensional motive and satisfy the Lefschetz standard conjecture. The proof is based on Vial's construction of a refined Chow-Kunneth decomposition for these varieties.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.