2000 character limit reached
Collaborative Learning for Language and Speaker Recognition
Published 27 Sep 2016 in cs.SD and cs.CL | (1609.08442v2)
Abstract: This paper presents a unified model to perform language and speaker recognition simultaneously and altogether. The model is based on a multi-task recurrent neural network where the output of one task is fed as the input of the other, leading to a collaborative learning framework that can improve both language and speaker recognition by borrowing information from each other. Our experiments demonstrated that the multi-task model outperforms the task-specific models on both tasks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.