Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Clifford group fails gracefully to be a unitary 4-design

Published 26 Sep 2016 in quant-ph | (1609.08172v1)

Abstract: A unitary t-design is a set of unitaries that is "evenly distributed" in the sense that the average of any t-th order polynomial over the design equals the average over the entire unitary group. In various fields -- e.g. quantum information theory -- one frequently encounters constructions that rely on matrices drawn uniformly at random from the unitary group. Often, it suffices to sample these matrices from a unitary t-design, for sufficiently high t. This results in more explicit, derandomized constructions. The most prominent unitary t-design considered in quantum information is the multi-qubit Clifford group. It is known to be a unitary 3-design, but, unfortunately, not a 4-design. Here, we give a simple, explicit characterization of the way in which the Clifford group fails to constitute a 4-design. Our results show that for various applications in quantum information theory and in the theory of convex signal recovery, Clifford orbits perform almost as well as those of true 4-designs. Technically, it turns out that in a precise sense, the 4th tensor power of the Clifford group affords only one more invariant subspace than the 4th tensor power of the unitary group. That additional subspace is a stabilizer code -- a structure extensively studied in the field of quantum error correction codes. The action of the Clifford group on this stabilizer code can be decomposed explicitly into previously known irreps of the discrete symplectic group. We give various constructions of exact complex projective 4-designs or approximate 4-designs of arbitrarily high precision from Clifford orbits. Building on results from coding theory, we give strong evidence suggesting that these orbits actually constitute complex projective 5-designs.

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.