Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Estimates for the number of eigenvalues of two dimensional Schroedinger operators lying below the essential spectrum (1609.08098v1)

Published 26 Sep 2016 in math.SP

Abstract: The celebrated Cwikel-Lieb_Rozenblum inequality gives an upper estimate for the number of negative eigenvalues of Schroedinger operators in dimension three and higher. The situation is much more difficult in the two dimensional case. There has been significant progress in obtaining upper estimates for the number of negative eigenvalues of two dimensional Schroedinger operators on the whole plane. In this thesis, we present estimates of the Cwikel-Lieb_Rozenblum type for the number of eigenvalues (counted with multiplicities) of two dimensional Schroedinger operators lying below the essential spectrum in terms of the norms of the potential. The problem is considered on the whole plane with different supports of the potential of dimension between 0 and 2, and on a strip with various boundary conditions. In both cases, the estimates involve weighted L1 norms and Orlicz norms of the potential.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube