Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Mitchell-like order for Ramsey and Ramsey-like cardinals (1609.07645v1)

Published 24 Sep 2016 in math.LO

Abstract: Smallish large cardinals $\kappa$ are often characterized by the existence of a collection of filters on $\kappa$, each of which is an ultrafilter on the subsets of $\kappa$ of some transitive $\mathrm{ZFC}-$-model of size $ \kappa$. We introduce a Mitchell-like order for Ramsey and Ramsey-like cardinals, ordering such collections of small filters. We show that the Mitchell-like order and the resulting notion of rank have all the desirable properties of the Mitchell order on normal measures on a measurable cardinal. The Mitchell-like order behaves robustly with respect to forcing constructions. We show that extensions with cover and approximation properties cannot increase the rank of a Ramsey or Ramsey-like cardinal. We use the results about extensions with cover and approximation properties together with recently developed techniques about soft killing of large-cardinal degrees by forcing to softly kill the ranks of Ramsey and Ramsey-like cardinals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.