Papers
Topics
Authors
Recent
2000 character limit reached

Large Margin Nearest Neighbor Classification using Curved Mahalanobis Distances

Published 22 Sep 2016 in cs.LG, cs.CG, and cs.CV | (1609.07082v2)

Abstract: We consider the supervised classification problem of machine learning in Cayley-Klein projective geometries: We show how to learn a curved Mahalanobis metric distance corresponding to either the hyperbolic geometry or the elliptic geometry using the Large Margin Nearest Neighbor (LMNN) framework. We report on our experimental results, and further consider the case of learning a mixed curved Mahalanobis distance. Besides, we show that the Cayley-Klein Voronoi diagrams are affine, and can be built from an equivalent (clipped) power diagrams, and that Cayley-Klein balls have Mahalanobis shapes with displaced centers.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.