Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Content of Local Cohomology, Parameter Ideals, and Robust Algebras (1609.07017v1)

Published 22 Sep 2016 in math.AC

Abstract: This paper continues the investigation of quasilength, of content of local cohomology with respect to generators of the support ideal, and of robust algebras begun in joint work of Hochster and Huneke. We settle several questions raised by Hochster and Huneke. In particular, we give a family of examples of top local cohomology modules both in equal characteristic 0 and in positive prime characteristic that are nonzero but have content 0. We use the notion of a robust forcing algebra (the condition turns out to be strictly stronger than the notion of a solid forcing algebra in, for example, equal characteristic 0) to define a new closure operation on ideals. We prove that this new notion of closure coincides with tight closure for ideals in complete local domains of positive characteristic, which requires proving that forcing algebras for instances of tight closure are robust, and study several related problems. This gives, in effect, a new characterization of tight closure in complete local domains of positive characteristic. As a byproduct, we also answer a question of Lyubeznik in the negative.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.