Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Selective sampling after solving a convex problem (1609.05609v1)

Published 19 Sep 2016 in math.ST and stat.TH

Abstract: We consider the problem of selective inference after solving a (randomized) convex statistical learning program in the form of a penalized or constrained loss function. Our first main result is a change-of-measure formula that describes many conditional sampling problems of interest in selective inference. Our approach is model-agnostic in the sense that users may provide their own statistical model for inference, we simply provide the modification of each distribution in the model after the selection. Our second main result describes the geometric structure in the Jacobian appearing in the change of measure, drawing connections to curvature measures appearing in Weyl-Steiner volume-of-tubes formulae. This Jacobian is necessary for problems in which the convex penalty is not polyhedral, with the prototypical example being group LASSO or the nuclear norm. We derive explicit formulae for the Jacobian of the group LASSO. To illustrate the generality of our method, we consider many examples throughout, varying both the penalty or constraint in the statistical learning problem as well as the loss function, also considering selective inference after solving multiple statistical learning programs. Penalties considered include LASSO, forward stepwise, stagewise algorithms, marginal screening and generalized LASSO. Loss functions considered include squared-error, logistic, and log-det for covariance matrix estimation. Having described the appropriate distribution we wish to sample from through our first two results, we outline a framework for sampling using a projected Langevin sampler in the (commonly occuring) case that the distribution is log-concave.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.