Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbiased Sparse Subspace Clustering By Selective Pursuit (1609.05057v2)

Published 16 Sep 2016 in stat.ML

Abstract: Sparse subspace clustering (SSC) is an elegant approach for unsupervised segmentation if the data points of each cluster are located in linear subspaces. This model applies, for instance, in motion segmentation if some restrictions on the camera model hold. SSC requires that problems based on the $l_1$-norm are solved to infer which points belong to the same subspace. If these unknown subspaces are well-separated this algorithm is guaranteed to succeed. The algorithm rests upon the assumption that points on the same subspace are well spread. The question what happens if this condition is violated has not yet been investigated. In this work, the effect of particular distributions on the same subspace will be analyzed. It will be shown that SSC fails to infer correct labels if points on the same subspace fall into more than one cluster.

Summary

We haven't generated a summary for this paper yet.