Papers
Topics
Authors
Recent
2000 character limit reached

Unbiased Sparse Subspace Clustering By Selective Pursuit

Published 16 Sep 2016 in stat.ML | (1609.05057v2)

Abstract: Sparse subspace clustering (SSC) is an elegant approach for unsupervised segmentation if the data points of each cluster are located in linear subspaces. This model applies, for instance, in motion segmentation if some restrictions on the camera model hold. SSC requires that problems based on the $l_1$-norm are solved to infer which points belong to the same subspace. If these unknown subspaces are well-separated this algorithm is guaranteed to succeed. The algorithm rests upon the assumption that points on the same subspace are well spread. The question what happens if this condition is violated has not yet been investigated. In this work, the effect of particular distributions on the same subspace will be analyzed. It will be shown that SSC fails to infer correct labels if points on the same subspace fall into more than one cluster.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.