Model Selection Framework for Graph-based data (1609.04859v1)
Abstract: Graphs are powerful abstractions for capturing complex relationships in diverse application settings. An active area of research focuses on theoretical models that define the generative mechanism of a graph. Yet given the complexity and inherent noise in real datasets, it is still very challenging to identify the best model for a given observed graph. We discuss a framework for graph model selection that leverages a long list of graph topological properties and a random forest classifier to learn and classify different graph instances. We fully characterize the discriminative power of our approach as we sweep through the parameter space of two generative models, the Erdos-Renyi and the stochastic block model. We show that our approach gets very close to known theoretical bounds and we provide insight on which topological features play a critical discriminating role.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.