Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization (1609.04065v1)

Published 13 Sep 2016 in q-fin.RM, math.OC, q-fin.CP, q-fin.MF, and q-fin.PM

Abstract: Worst-case risk measures refer to the calculation of the largest value for risk measures when only partial information of the underlying distribution is available. For the popular risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), it is now known that their worst-case counterparts can be evaluated in closed form when only the first two moments are known for the underlying distribution. These results are remarkable since they not only simplify the use of worst-case risk measures but also provide great insight into the connection between the worst-case risk measures and existing risk measures. We show in this paper that somewhat surprisingly similar closed-form solutions also exist for the general class of law invariant coherent risk measures, which consists of spectral risk measures as special cases that are arguably the most important extensions of CVaR. We shed light on the one-to-one correspondence between a worst-case law invariant risk measure and a worst-case CVaR (and a worst-case VaR), which enables one to carry over the development of worst-case VaR in the context of portfolio optimization to the worst-case law invariant risk measures immediately.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.