Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stochastic Hamiltonians (1609.03785v3)

Published 13 Sep 2016 in quant-ph

Abstract: Non-stoquastic Hamiltonians have both positive and negative signs in off-diagonal elements in their matrix representation in the standard computational basis and thus cannot be simulated efficiently by the standard quantum Monte Carlo method due to the sign problem. We describe our analytical studies of this type of Hamiltonians with infinite-range non-random as well as random interactions from the perspective of possible enhancement of the efficiency of quantum annealing or adiabatic quantum computing. It is shown that multi-body transverse interactions like $XX$ and $XXXXX$ with positive coefficients appended to a stoquastic transverse-field Ising model render the Hamiltonian non-stoquastic and reduce a first-order quantum phase transition in the simple transverse-field case to a second-order transition. This implies that the efficiency of quantum annealing is exponentially enhanced, because a first-order transition has an exponentially small energy gap (and therefore exponentially long computation time) whereas a second-order transition has a polynomially decaying gap (polynomial computation time). The examples presented here represent rare instances where strong quantum effects, in the sense that they cannot be efficiently simulated in the standard quantum Monte Carlo, have analytically been shown to exponentially enhance the efficiency of quantum annealing for combinatorial optimization problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube