Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Encoding and Decoding for Point Process Observations: an Approximate Closed-Form Filter

Published 12 Sep 2016 in stat.ML and q-bio.NC | (1609.03519v1)

Abstract: The process of dynamic state estimation (filtering) based on point process observations is in general intractable. Numerical sampling techniques are often practically useful, but lead to limited conceptual insight about optimal encoding/decoding strategies, which are of significant relevance to Computational Neuroscience. We develop an analytically tractable Bayesian approximation to optimal filtering based on point process observations, which allows us to introduce distributional assumptions about sensor properties, that greatly facilitate the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Numerical comparison with particle filtering demonstrate the quality of the approximation. The analytic framework leads to insights which are difficult to obtain from numerical algorithms, and is consistent with biological observations about the distribution of sensory cells' tuning curve centers.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.