Papers
Topics
Authors
Recent
2000 character limit reached

A Flexible Recommendation System for Cable TV

Published 8 Sep 2016 in cs.IR | (1609.02451v2)

Abstract: Recommendation systems are being explored by Cable TV operators to improve user satisfaction with services, such as Live TV and Video on Demand (VOD) services. More recently, Catch-up TV has been introduced, allowing users to watch recent broadcast content whenever they want to. These services give users a large set of options from which they can choose from, creating an information overflow problem. Thus, recommendation systems arise as essential tools to solve this problem by helping users in their selection, which increases not only user satisfaction but also user engagement and content consumption. In this paper we present a learning to rank approach that uses contextual information and implicit feedback to improve recommendation systems for a Cable TV operator that provides Live and Catch-up TV services. We compare our approach with existing state-of-the-art algorithms and show that our approach is superior in accuracy, while maintaining high scores of diversity and serendipity.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.