Papers
Topics
Authors
Recent
Search
2000 character limit reached

Structured signal recovery from non-linear and heavy-tailed measurements

Published 5 Sep 2016 in math.ST and stat.TH | (1609.01025v2)

Abstract: We study high-dimensional signal recovery from non-linear measurements with design vectors having elliptically symmetric distribution. Special attention is devoted to the situation when the unknown signal belongs to a set of low statistical complexity, while both the measurements and the design vectors are heavy-tailed. We propose and analyze a new estimator that adapts to the structure of the problem, while being robust both to the possible model misspecification characterized by arbitrary non-linearity of the measurements as well as to data corruption modeled by the heavy-tailed distributions. Moreover, this estimator has low computational complexity. Our results are expressed in the form of exponential concentration inequalities for the error of the proposed estimator. On the technical side, our proofs rely on the generic chaining methods, and illustrate the power of this approach for statistical applications. Theory is supported by numerical experiments demonstrating that our estimator outperforms existing alternatives when data is heavy-tailed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.