Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds (1609.00699v1)

Published 2 Sep 2016 in math.DS

Abstract: Let $ G $ be a connected, simply connected nilpotent Lie group and $ \Gamma < G $ a lattice. We prove that each ergodic diffeomorphism $ \phi(x\Gamma)=uA(x)\Gamma $ on the nilmanifold $ G/\Gamma $, where $ u\in G $ and $ A:G\to G $ is a unipotent automorphism satisfying $ A(\Gamma)=\Gamma $, enjoys the property of asymptotically orthogonal powers (AOP). Two consequences follow: (i) Sarnak's conjecture on M\"obius orthogonality holds in every uniquely ergodic model of an ergodic affine unipotent diffeomorphism; (ii) For ergodic affine unipotent diffeomorphisms themselves, the M\"obius orthogonality holds on so called typical short interval: $ \frac1 M\sum_{M\leq m<2M}\left|\frac1H\sum_{m\leq n<m+H} f(\phin(x\Gamma))\mu (n)\right|\to 0$ as $ H\to\infty $ and $ H/M\to0 $ for each $ x\Gamma\in G/\Gamma $ and each $ f\in C(G/\Gamma) $. In particular, the results in (i) and (ii) hold for ergodic nil-translations. Moreover, we prove that each nilsequence is orthogonal to the M\"obius function $\mu$ on a typical short interval. We also study the problem of lifting of the AOP property to induced actions and derive some applications on uniform distribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.