Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The Riemann zeta function and Gaussian multiplicative chaos: statistics on the critical line (1609.00027v3)

Published 31 Aug 2016 in math.PR and math.NT

Abstract: We prove that if $\omega$ is uniformly distributed on $[0,1]$, then as $T\to\infty$, $t\mapsto \zeta(i\omega T+it+1/2)$ converges to a non-trivial random generalized function, which in turn is identified as a product of a very well behaved random smooth function and a random generalized function known as a complex Gaussian multiplicative chaos distribution. This demonstrates a novel rigorous connection between number theory and the theory of multiplicative chaos -- the latter is known to be connected to many other areas of mathematics. We also investigate the statistical behavior of the zeta function on the mesoscopic scale. We prove that if we let $\delta_T$ approach zero slowly enough as $T\to\infty$, then $t\mapsto \zeta(1/2+i\delta_T t+i\omega T)$ is asymptotically a product of a divergent scalar quantity suggested by Selberg's central limit theorem and a strictly Gaussian multiplicative chaos. We also prove a similar result for the characteristic polynomial of a Haar distributed random unitary matrix, where the scalar quantity is slightly different but the multiplicative chaos part is identical. This essentially says that up to scalar multiples, the zeta function and the characteristic polynomial of a Haar distributed random unitary matrix have an identical distribution on the mesoscopic scale.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.