Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Adaptive Lasso with Variational Bayes for Variable Selection in High-dimensional Generalized Linear Mixed Models (1608.08347v1)

Published 30 Aug 2016 in stat.ME

Abstract: This article describes a full Bayesian treatment for simultaneous fixed-effect selection and parameter estimation in high-dimensional generalized linear mixed models. The approach consists of using a Bayesian adaptive Lasso penalty for signal-level adaptive shrinkage and a fast Variational Bayes scheme for estimating the posterior mode of the coefficients. The proposed approach offers several advantages over the existing methods, for example, the adaptive shrinkage parameters are automatically incorporated, no Laplace approximation step is required to integrate out the random effects. The performance of our approach is illustrated on several simulated and real data examples. The algorithm is implemented in the R package glmmvb and is made available online.

Summary

We haven't generated a summary for this paper yet.