Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Adaptive Lasso with Variational Bayes for Variable Selection in High-dimensional Generalized Linear Mixed Models

Published 30 Aug 2016 in stat.ME | (1608.08347v1)

Abstract: This article describes a full Bayesian treatment for simultaneous fixed-effect selection and parameter estimation in high-dimensional generalized linear mixed models. The approach consists of using a Bayesian adaptive Lasso penalty for signal-level adaptive shrinkage and a fast Variational Bayes scheme for estimating the posterior mode of the coefficients. The proposed approach offers several advantages over the existing methods, for example, the adaptive shrinkage parameters are automatically incorporated, no Laplace approximation step is required to integrate out the random effects. The performance of our approach is illustrated on several simulated and real data examples. The algorithm is implemented in the R package glmmvb and is made available online.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.