Bayesian Adaptive Lasso with Variational Bayes for Variable Selection in High-dimensional Generalized Linear Mixed Models
Abstract: This article describes a full Bayesian treatment for simultaneous fixed-effect selection and parameter estimation in high-dimensional generalized linear mixed models. The approach consists of using a Bayesian adaptive Lasso penalty for signal-level adaptive shrinkage and a fast Variational Bayes scheme for estimating the posterior mode of the coefficients. The proposed approach offers several advantages over the existing methods, for example, the adaptive shrinkage parameters are automatically incorporated, no Laplace approximation step is required to integrate out the random effects. The performance of our approach is illustrated on several simulated and real data examples. The algorithm is implemented in the R package glmmvb and is made available online.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.