Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Business Process Deviance Mining: Review and Evaluation (1608.08252v1)

Published 29 Aug 2016 in cs.AI and cs.DB

Abstract: Business process deviance refers to the phenomenon whereby a subset of the executions of a business process deviate, in a negative or positive way, with respect to its expected or desirable outcomes. Deviant executions of a business process include those that violate compliance rules, or executions that undershoot or exceed performance targets. Deviance mining is concerned with uncovering the reasons for deviant executions by analyzing business process event logs. This article provides a systematic review and comparative evaluation of deviance mining approaches based on a family of data mining techniques known as sequence classification. Using real-life logs from multiple domains, we evaluate a range of feature types and classification methods in terms of their ability to accurately discriminate between normal and deviant executions of a process. We also analyze the interestingness of the rule sets extracted using different methods. We observe that feature sets extracted using pattern mining techniques only slightly outperform simpler feature sets based on counts of individual activity occurrences in a trace.

Citations (20)

Summary

We haven't generated a summary for this paper yet.