Papers
Topics
Authors
Recent
2000 character limit reached

The Lambrechts-Stanley Model of Configuration Spaces

Published 29 Aug 2016 in math.AT | (1608.08054v4)

Abstract: We prove the validity over $\mathbb{R}$ of a commutative differential graded algebra model of configuration spaces for simply connected closed smooth manifolds, answering a conjecture of Lambrechts--Stanley. We get as a result that the real homotopy type of such configuration spaces only depends on the real homotopy type of the manifold. We moreover prove, if the dimension of the manifold is at least $4$, that our model is compatible with the action of the Fulton--MacPherson operad (weakly equivalent to the little disks operad) when the manifold is framed. We use this more precise result to get a complex computing factorization homology of framed manifolds. Our proofs use the same ideas as Kontsevich's proof of the formality of the little disks operads.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.