Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Testing APSyn against Vector Cosine on Similarity Estimation (1608.07738v2)

Published 27 Aug 2016 in cs.CL

Abstract: In Distributional Semantic Models (DSMs), Vector Cosine is widely used to estimate similarity between word vectors, although this measure was noticed to suffer from several shortcomings. The recent literature has proposed other methods which attempt to mitigate such biases. In this paper, we intend to investigate APSyn, a measure that computes the extent of the intersection between the most associated contexts of two target words, weighting it by context relevance. We evaluated this metric in a similarity estimation task on several popular test sets, and our results show that APSyn is in fact highly competitive, even with respect to the results reported in the literature for word embeddings. On top of it, APSyn addresses some of the weaknesses of Vector Cosine, performing well also on genuine similarity estimation.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.