Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diagonality Measures of Hermitian Positive-Definite Matrices with Application to the Approximate Joint Diagonalization Problem (1608.06613v2)

Published 23 Aug 2016 in cs.IT and math.IT

Abstract: In this paper, we introduce properly-invariant diagonality measures of Hermitian positive-definite matrices. These diagonality measures are defined as distances or divergences between a given positive-definite matrix and its diagonal part. We then give closed-form expressions of these diagonality measures and discuss their invariance properties. The diagonality measure based on the log-determinant $\alpha$-divergence is general enough as it includes a diagonality criterion used by the signal processing community as a special case. These diagonality measures are then used to formulate minimization problems for finding the approximate joint diagonalizer of a given set of Hermitian positive-definite matrices. Numerical computations based on a modified Newton method are presented and commented.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.