Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analyticity Properties and Asymptotic Behavior of Scattering Amplitude in Higher Dimensional Theories (1608.06402v1)

Published 23 Aug 2016 in hep-th

Abstract: The properties of the high energy behavior of the scattering amplitude of massive, neutral and spinless particles in higher dimensional field theories are investigated. The axiomatic formulation of Lehmann, Symanzik and Zimmermann is adopted. The analyticity properties of the causal, the retarded and the advanced functions associated with the four point elastic amplitudes are studied. The analog of the Lehmann-Jost-Dyson representation is obtained in higher dimensional field theories. The generalized J-L-D representation is utilized to derive the t-plane analyticity property of the amplitude. The existence of an ellipse analogous to the Lehmann ellipse is demonstrated. Thus a fixed-t dispersion relation can be written down with finite number of subtractions due to the temperedness of the amplitudes. The domain of analyticity of scattering amplitude in $s$ and $t$ variables is extended by imposing unitarity constraints. A generalized version of Martin's theorem is derived to prove the existence of such a domain in D-dimensional field theories. It is shown that the amplitude can be expanded in a power series in t which converges for |t|<R; R being s-independent. The positivity properties of absorptive amplitudes are derived to prove the $t$-plane analyticity of amplitude. In the extended analyticity domain dispersion relations are written with two subtractions. The bound on the total cross section is derived from LSZ axioms without any extra ad hoc assumptions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.