Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convexity and Star-shapedness of Real Linear Images of Special Orthogonal Orbits (1608.06101v1)

Published 22 Aug 2016 in math.FA

Abstract: Let $A\in \mathbb{R}{N\times N}$ and $\mathrm{SO}_n:={ U \in \mathbb{R}{N \times N}:UUt=I_n,\det U>0}$ be the set of $n\times n$ special orthogonal matrices. Define the (real) special orthogonal orbit of $A$ by [ O(A):={UAV:U,V\in\mathrm{SO}_n}. ] In this paper, we show that the linear image of $O(A)$ is star-shaped with respect to the origin for arbitrary linear maps $L:\mathbb{R}{N\times N}\to\mathbb{R}\ell$ if $n\geq 2{\ell-1}$. In particular, for linear maps $L:\mathbb{R}{N\times N}\to\mathbb{R}2$ and when $A$ has distinct singular values, we study $B\in O(A)$ such that $L(B)$ is a boundary point of $L(O(A))$. This gives an alternative proof of a result by Li and Tam on the convexity of $L(O(A))$ for linear maps $L:\mathbb{R}{N\times N}\to\mathbb{R}2$.

Summary

We haven't generated a summary for this paper yet.