Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A Non-convex One-Pass Framework for Generalized Factorization Machine and Rank-One Matrix Sensing (1608.05995v5)

Published 21 Aug 2016 in stat.ML and cs.LG

Abstract: We develop an efficient alternating framework for learning a generalized version of Factorization Machine (gFM) on steaming data with provable guarantees. When the instances are sampled from $d$ dimensional random Gaussian vectors and the target second order coefficient matrix in gFM is of rank $k$, our algorithm converges linearly, achieves $O(\epsilon)$ recovery error after retrieving $O(k{3}d\log(1/\epsilon))$ training instances, consumes $O(kd)$ memory in one-pass of dataset and only requires matrix-vector product operations in each iteration. The key ingredient of our framework is a construction of an estimation sequence endowed with a so-called Conditionally Independent RIP condition (CI-RIP). As special cases of gFM, our framework can be applied to symmetric or asymmetric rank-one matrix sensing problems, such as inductive matrix completion and phase retrieval.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.