Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Representations for Biological Sequence Analysis (1608.05949v2)

Published 21 Aug 2016 in cs.LG and q-bio.QM

Abstract: Biological sequence comparison is a key step in inferring the relatedness of various organisms and the functional similarity of their components. Thanks to the Next Generation Sequencing efforts, an abundance of sequence data is now available to be processed for a range of bioinformatics applications. Embedding a biological sequence over a nucleotide or amino acid alphabet in a lower dimensional vector space makes the data more amenable for use by current machine learning tools, provided the quality of embedding is high and it captures the most meaningful information of the original sequences. Motivated by recent advances in the text document embedding literature, we present a new method, called seq2vec, to represent a complete biological sequence in an Euclidean space. The new representation has the potential to capture the contextual information of the original sequence necessary for sequence comparison tasks. We test our embeddings with protein sequence classification and retrieval tasks and demonstrate encouraging outcomes.

Citations (66)

Summary

We haven't generated a summary for this paper yet.