Papers
Topics
Authors
Recent
2000 character limit reached

Application of multiview techniques to NHANES dataset

Published 16 Aug 2016 in cs.LG and stat.ML | (1608.04783v1)

Abstract: Disease prediction or classification using health datasets involve using well-known predictors associated with the disease as features for the models. This study considers multiple data components of an individual's health, using the relationship between variables to generate features that may improve the performance of disease classification models. In order to capture information from different aspects of the data, this project uses a multiview learning approach, using Canonical Correlation Analysis (CCA), a technique that finds projections with maximum correlations between two data views. Data categories collected from the NHANES survey (1999-2014) are used as views to learn the multiview representations. The usefulness of the representations is demonstrated by applying them as features in a Diabetes classification task.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.