Papers
Topics
Authors
Recent
2000 character limit reached

The generic quantum superintegrable system on the sphere and Racah operators

Published 16 Aug 2016 in math-ph, math.CA, math.MP, and math.QA | (1608.04590v3)

Abstract: We consider the generic quantum superintegrable system on the $d$-sphere with potential $V(y)=\sum_{k=1}{d+1}\frac{b_k}{y_k2}$, where $b_k$ are parameters. Appropriately normalized, the symmetry operators for the Hamiltonian define a representation of the Kohno-Drinfeld Lie algebra on the space of polynomials orthogonal with respect to the Dirichlet distribution. The Gaudin subalgebras generated by Jucys-Murphy elements are diagonalized by families of Jacobi polynomials in $d$ variables on the simplex. We define a set of generators for the symmetry algebra and we prove that their action on the Jacobi polynomials is represented by the multivariable Racah operators introduced in arXiv:0705.1469. The constructions also yield a new Lie-theoretic interpretation of the bispectral property for Tratnik's multivariable Racah polynomials.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.