Papers
Topics
Authors
Recent
2000 character limit reached

Dimensionality determination: a thresholding double ridge ratio criterion (1608.04457v1)

Published 16 Aug 2016 in math.ST and stat.TH

Abstract: Popularly used eigendecomposition-based criteria such as BIC type, ratio estimation and principal component-based criterion often underdetermine model dimensionality for regressions or the number of factors for factor models. This longstanding problem is caused by the existence of one or two dominating eigenvalues compared to other nonzero eigenvalues. To alleviate this difficulty, we propose a thresholding double ridge ratio criterion such that the true dimension can be better identified and is less underdetermined. Unlike all existing eigendecomposition-based criteria, this criterion can define consistent estimate without requiring the uniqueness of minimum and can then handle possible multiple local minima scenarios. This generic strategy would be readily applied to other dimensionality or order determination problems. In this paper, we systematically investigate, for general sufficient dimension reduction theory, the dimensionality determination with fixed and divergent dimensions; for local alternative models that converge to its limiting model with fewer projected covariates, discuss when the number of projected covariates can be consistently estimated, when cannot; and for ultra-high dimensional factor models, study the estimation consistency for the number of common factors. Numerical studies are conducted to examine the finite sample performance of the method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.