Papers
Topics
Authors
Recent
2000 character limit reached

Sparsity Constrained Minimization via Mathematical Programming with Equilibrium Constraints

Published 15 Aug 2016 in math.OC | (1608.04430v3)

Abstract: Sparsity constrained minimization captures a wide spectrum of applications in both machine learning and signal processing. This class of problems is difficult to solve since it is NP-hard and existing solutions are primarily based on Iterative Hard Thresholding (IHT). In this paper, we consider a class of continuous optimization techniques based on Mathematical Programs with Equilibrium Constraints (MPECs) to solve general sparsity constrained problems. Specifically, we reformulate the problem as an equivalent biconvex MPEC, which we can solve using an exact penalty method or an alternating direction method. We elaborate on the merits of both proposed methods and analyze their convergence properties. Finally, we demonstrate the effectiveness and versatility of our methods on several important problems, including feature selection, segmented regression, MRF optimization, trend filtering and impulse noise removal. Extensive experiments show that our MPEC-based methods outperform state-of-the-art techniques, especially those based on IHT.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.