Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy Maximization Framework for Graph-based Influence Functions (1608.04036v2)

Published 13 Aug 2016 in cs.DS

Abstract: The study of graph-based submodular maximization problems was initiated in a seminal work of Kempe, Kleinberg, and Tardos (2003): An {\em influence} function of subsets of nodes is defined by the graph structure and the aim is to find subsets of seed nodes with (approximately) optimal tradeoff of size and influence. Applications include viral marketing, monitoring, and active learning of node labels. This powerful formulation was studied for (generalized) {\em coverage} functions, where the influence of a seed set on a node is the maximum utility of a seed item to the node, and for pairwise {\em utility} based on reachability, distances, or reverse ranks. We define a rich class of influence functions which unifies and extends previous work beyond coverage functions and specific utility functions. We present a meta-algorithm for approximate greedy maximization with strong approximation quality guarantees and worst-case near-linear computation for all functions in our class. Our meta-algorithm generalizes a recent design by Cohen et al (2014) that was specific for distance-based coverage functions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Edith Cohen (52 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.