Compactness in MV-Topologies: Tychonoff Theorem and Stone-Cech Compactification
Abstract: In this paper, we discuss some questions about compactness in MV-topological spaces. More precisely, we first present a Tychonoff theorem for such a class of fuzzy topological spaces and some consequence of this result, among which, for example, the existence of products in the category of Stone MV-spaces and, consequently, of coproducts in the one of limit cut complete MV-algebras. Then we show that our Tychonoff theorem is equivalent, in ZF, to the Axiom of Choice, classical Tychonoff theorem, and Lowen's analogous result for lattice-valued fuzzy topology. Last, we show an extension of the Stone-Cech compactification functor to the category of MV-topological spaces, and we discuss its relationship with previous works on compactification for fuzzy topological spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.