Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems

Published 9 Aug 2016 in math.OC and cs.SY | (1608.02741v3)

Abstract: Several results regarding the stability and the stabilization of linear impulsive positive systems under arbitrary, constant, minimum, maximum and range dwell-time are obtained. The proposed stability conditions characterize the pointwise decrease of a linear copositive Lyapunov function and are formulated in terms of finite-dimensional or semi-infinite linear programs. To be applicable to uncertain systems and to control design, a lifting approach introducing a clock-variable is then considered in order to make the conditions affine in the matrices of the system. The resulting stability and stabilization conditions are stated as infinite-dimensional linear programs for which three asymptotically exact computational methods are proposed and compared with each other on numerical examples. Similar results are then obtained for linear positive switched systems by exploiting the possibility of reformulating a switched system as an impulsive system. Some existing stability conditions are retrieved and extended to stabilization using the proposed lifting approach. Several examples are finally given for illustration.

Citations (155)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.