Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems
Abstract: Several results regarding the stability and the stabilization of linear impulsive positive systems under arbitrary, constant, minimum, maximum and range dwell-time are obtained. The proposed stability conditions characterize the pointwise decrease of a linear copositive Lyapunov function and are formulated in terms of finite-dimensional or semi-infinite linear programs. To be applicable to uncertain systems and to control design, a lifting approach introducing a clock-variable is then considered in order to make the conditions affine in the matrices of the system. The resulting stability and stabilization conditions are stated as infinite-dimensional linear programs for which three asymptotically exact computational methods are proposed and compared with each other on numerical examples. Similar results are then obtained for linear positive switched systems by exploiting the possibility of reformulating a switched system as an impulsive system. Some existing stability conditions are retrieved and extended to stabilization using the proposed lifting approach. Several examples are finally given for illustration.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.