Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exact Structure Learning of Bayesian Networks by Optimal Path Extension

Published 9 Aug 2016 in cs.AI | (1608.02682v3)

Abstract: Bayesian networks are probabilistic graphical models often used in big data analytics. The problem of exact structure learning is to find a network structure that is optimal under certain scoring criteria. The problem is known to be NP-hard and the existing methods are both computationally and memory intensive. In this paper, we introduce a new approach for exact structure learning. Our strategy is to leverage relationship between a partial network structure and the remaining variables to constraint the number of ways in which the partial network can be optimally extended. Via experimental results, we show that the method provides up to three times improvement in runtime, and orders of magnitude reduction in memory consumption over the current best algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.