Papers
Topics
Authors
Recent
2000 character limit reached

Shifted symmetric functions and multirectangular coordinates of Young diagrams

Published 8 Aug 2016 in math.CO and math.RT | (1608.02447v2)

Abstract: In this paper, we study shifted Schur functions $S_\mu\star$, as well as a new family of shifted symmetric functions $\mathfrak{K}_\mu$ linked to Kostka numbers. We prove that both are polynomials in multi-rectangular coordinates, with nonnegative coefficients when written in terms of falling factorials. We then propose a conjectural generalization to the Jack setting. This conjecture is a lifting of Knop and Sahi's positivity result for usual Jack polynomials and resembles recent conjectures of Lassalle. We prove our conjecture for one-part partitions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.