Papers
Topics
Authors
Recent
2000 character limit reached

The ASEP and determinantal point processes

Published 4 Aug 2016 in math-ph, math.CA, math.MP, and math.PR | (1608.01564v1)

Abstract: We introduce a family of discrete determinantal point processes related to orthogonal polynomials on the real line, with correlation kernels defined via spectral projections for the associated Jacobi matrices. For classical weights, we show how such ensembles arise as limits of various hypergeometric orthogonal polynomials ensembles. We then prove that the q-Laplace transform of the height function of the ASEP with step initial condition is equal to the expectation of a simple multiplicative functional on a discrete Laguerre ensemble --- a member of the new family. This allows us to obtain the large time asymptotics of the ASEP in three limit regimes: (a) for finitely many rightmost particles; (b) GUE Tracy-Widom asymptotics of the height function; (c) KPZ asymptotics of the height function for the ASEP with weak asymmetry. We also give similar results for two instances of the stochastic six vertex model in a quadrant. The proofs are based on limit transitions for the corresponding determinantal point processes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.