Papers
Topics
Authors
Recent
2000 character limit reached

Limit theorems for the Zig-Zag process

Published 29 Jul 2016 in stat.CO | (1607.08845v2)

Abstract: Markov chain Monte Carlo methods provide an essential tool in statistics for sampling from complex probability distributions. While the standard approach to MCMC involves constructing discrete-time reversible Markov chains whose transition kernel is obtained via the Metropolis- Hastings algorithm, there has been recent interest in alternative schemes based on piecewise deterministic Markov processes (PDMPs). One such approach is based on the Zig-Zag process, introduced in Bierkens and Roberts (2016), which proved to provide a highly scalable sampling scheme for sampling in the big data regime (Bierkens, Fearnhead and Roberts (2016)). In this paper we study the performance of the Zig-Zag sampler, focusing on the one-dimensional case. In particular, we identify conditions under which a Central limit theorem (CLT) holds and characterize the asymptotic variance. Moreover, we study the influence of the switching rate on the diffusivity of the Zig-Zag process by identifying a diffusion limit as the switching rate tends to infinity. Based on our results we compare the performance of the Zig-Zag sampler to existing Monte Carlo methods, both analytically and through simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.