Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Green function and Poisson integrals of the Dunkl Laplacian (1607.08746v1)

Published 29 Jul 2016 in math.AP and math.CA

Abstract: We prove the existence and study properties of the Green function of the unit ball for the Dunkl Laplacian $\Delta_k$ in $\mathbb{R}d$. As applications we derive the Poisson-Jensen formula for $\Delta_k$-subharmonic functions and Hardy-Stein identities for the Poisson integrals of $\Delta_k$. We also obtain sharp estimates of the Newton potential kernel, Green function and Poisson kernel in the rank one case in $\mathbb{R}d$. These estimates contrast sharply with the well-known results in the potential theory of the classical Laplacian.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.