Papers
Topics
Authors
Recent
Search
2000 character limit reached

Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation

Published 27 Jul 2016 in math.AP | (1607.08068v2)

Abstract: We extend the De Giorgi--Nash--Moser theory to a class of kinetic Fokker-Planck equations and deduce new results on the Landau-Coulomb equation. More precisely, we first study the H{\"o}lder regularity and establish a Harnack inequality for solutions to a general linear equation of Fokker-Planck type whose coefficients are merely measurable and essentially bounded, i.e. assuming no regularity on the coefficients in order to later derive results for non-linear problems. This general equation has the formal structure of the hypoelliptic equations "of type II" , sometimes also called ultraparabolic equations of Kolmogorov type, but with rough coefficients: it combines a first-order skew-symmetric operator with a second-order elliptic operator involving derivatives along only part of the coordinates and with rough coefficients. These general results are then applied to the non-negative essentially bounded weak solutions of the Landau equation with inverse-power law $\gamma$ $\in$ [--d, 1] whose mass, energy and entropy density are bounded and mass is bounded away from 0, and we deduce the H{\"o}lder regularity of these solutions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.