Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OntoCat: Automatically categorizing knowledge in API Documentation (1607.07602v1)

Published 26 Jul 2016 in cs.SE, cs.AI, and cs.CL

Abstract: Most application development happens in the context of complex APIs; reference documentation for APIs has grown tremendously in variety, complexity, and volume, and can be difficult to navigate. There is a growing need to develop well-organized ways to access the knowledge latent in the documentation; several research efforts deal with the organization (ontology) of API-related knowledge. Extensive knowledge-engineering work, supported by a rigorous qualitative analysis, by Maalej & Robillard [3] has identified a useful taxonomy of API knowledge. Based on this taxonomy, we introduce a domain independent technique to extract the knowledge types from the given API reference documentation. Our system, OntoCat, introduces total nine different features and their semantic and statistical combinations to classify the different knowledge types. We tested OntoCat on python API reference documentation. Our experimental results show the effectiveness of the system and opens the scope of probably related research areas (i.e., user behavior, documentation quality, etc.).

Citations (5)

Summary

We haven't generated a summary for this paper yet.