Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single Stage Prediction with Embedded Topic Modeling of Online Reviews for Mobile App Management

Published 26 Jul 2016 in stat.AP, cs.IR, and cs.SE | (1607.07515v3)

Abstract: Mobile apps are one of the building blocks of the mobile digital economy. A differentiating feature of mobile apps to traditional enterprise software is online reviews, which are available on app marketplaces and represent a valuable source of consumer feedback on the app. We create a supervised topic modeling approach for app developers to use mobile reviews as useful sources of quality and customer feedback, thereby complementing traditional software testing. The approach is based on a constrained matrix factorization that leverages the relationship between term frequency and a given response variable in addition to co-occurrences between terms to recover topics that are both predictive of consumer sentiment and useful for understanding the underlying textual themes. The factorization is combined with ordinal regression to provide guidance from online reviews on a single app's performance as well as systematically compare different apps over time for benchmarking of features and consumer sentiment. We apply our approach using a dataset of over 100,000 mobile reviews over several years for three of the most popular online travel agent apps from the iTunes and Google Play marketplaces.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.